

serving science & profession

Mining for Heat

Bryan Lovell Meeting 2019: 21st – 23rd Jan 2019, Geological Society London

Charlotte Adams^{1,5}, Jeremy Crooks², Wayne Handley³, Adam Black⁴, Emma Campbell⁴ and Jon Gluyas⁵

¹Department of Engineering, Durham University, Durham, DH1 3LE, UK
²Coal Authority, 200 Lichfield Lane, Mansfield, NG18 4RG, UK
³Handley Project Solutions Limited, 156 Russell Drive, Nottingham, NG8 2BE, UK
⁴Lanchester Wines, Greencroft Estate, Annfield Plain, Stanley, Durham, DH9 7XP, UK
⁵Department of Earth Sciences, Durham University, Durham DH1 3LE, UK

The Coal Authority

Content

- The Role of Geoscience in Decarbonising heat
 - When coal was king
 - UK energy mix
 - Decarbonising heat
 - Developing a legacy
 - Approaches
 - Case studies

Source: www.readly.com

When Coal was King

- 15bn tonnes coal mined
- 2bn m³ water
- 2.2MGwh of heat in place
- 12-20°C heat pumps
- Heating/cooling/ storage
- 80MW currently pumped

Great Britain's Energy Mix

Great Britain's Energy Vectors GWh per day

Data are from National Grid, Elexon and BEIS. Charts are licensed under an Attribution-NoDerivatives 4.0 International license Charts can be downloaded from http://bit.ly/energycharts

Durham University

by Dr Grant Wilson grant.wilson@sheffield.ac.uk

Celebrating the end of coal?

WHERE DOES THE UK'S GAS COME FROM?

How secure are our future supplies?

Developing a Legacy

Durham Energy Institute

Former coal mining areas Source: The Coal Authority

England and Wales heat demand http://csembaa1.miniserver.com/index.html

County Durham

Source: Durham Mining Museum

- Coal Output 2.5bn t
- Approx 10,000m³/day are pumped
- 0.4bn m³ of water in flooded workings
- Reserve in place heat for over 100,000 homes
- Extractable heat 25,000 homes or 12% of homes in the County

Heat Network Compatibility

Durham Energy Institute

- DHN decarbonisation for urban areas
- UK -14-43% building heat by DHN by 2050
- Current build rates = 27-83 years
- In Denmark over 61% DHN
- UK 2% of heat demand
- Depends upon design temp

Source: www.decentralized-energy.com

Mine Energy for Heat Networks

Pros

- Low carbon
- Heating and cooling
- Offsets gas consumption
- Accessible to many regions
- No fuel transport required
- Continuous
- Energy storage
- Economic improvement

Cons

- Upfront cost
- Perceived risks
 - Low grade heat
- Social acceptability
- Retrofit complex

Source: www.thomasons.co.uk

A New Approach

- Rethink heat
- Higher T = more gas and more CO₂
- Higher T = more losses
- Changes to policy and planning
- Consumer demand
- Design temps

Durham University Durham Energy Institute

Assessing the Resource

Source: The Coal Authority

Approach

- Develop a model of the subsurface
- Calculate heat in place
- Consider flow through system
- Calculate extractable heat

Source: The Coal Authority

Spennymoor Case Study

- Volume of Top Busty Seam approx. 50,000m³
- A flow rate of 65l/s could supply 200 homes if 3°C is removed
- Spennymoor has both good resources and planned new build

Source: Daniel Mallin-Martin MSc Thesis, University of Strathclyde 2017

How this works?

Source: https://inhabitat.com/heerlen-minewater-project/

Durham Energy Institute

Heerlen the Netherlands

- Five wells were drilled into old workings of the Oranje Nassau Mine
- Water up to 28°C is extracted from 700m
- Supplies to homes and commercial buildings
- New and retrofit
- 7km heat distribution network comprising of 3 pipes (for the hot, cool and mixed water respectively) serves the connected buildings
- Supplies heating for around 200,000m² of floor area
- Smart grid between buildings
- Keeps money spent on energy in the region Images: http://www.mijnwater.com

Lanchester Wines

- Combined 4MW open loop water source heat pumps in Felling, Gateshead
- 2x Lanchester Wines warehouses
 - 2.4MW at Abbotsford Road (220,000ft²)
 - 1.2MW at Nest Road (140,000ft²)
- Utilising water from flooded coal mines a vast network going back to Victorian times
- £3.5million investment by Lanchester Wines – project started 2016, ongoing (learning curve)
- Boreholes 80m 120m deep

Summary

- Heat is as important as electricity
- A vast infrastructure exists for heat supply and storage
- Mine energy provides indigenous and low carbon energy supply compatible with heat networks
- Mine energy could provide a low carbon source of heat in future

Making this happen

Main science questions

- How is mine energy best integrated into energy networks
- Explore the vast opportunity for energy storage
- Longevity and connectivity of systems if uptake increases

Main barriers to development

- Upfront capital cost
- Risk averse attitudes
- Perceptions of heat

Source: www.geograph.org.uk

Implications for policy or regulation

- Planning policy should consider mine energy potential in coalfield areas
- Building control include low temperature systems

Thank you for Listening

c.a.adams@durham.ac.uk